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The stability of pendent liquid drops. 
Part 2. Axial symmetry 

By E.PITTS 
Research Division, Kodak Limited, Headstone Drive, Harrow, Middlesex HA1 4TP 

(Received 8 June 1973) 

In  a drop of liquid which hangs below a horizontal support or a t  the end of a 
tube, the forces due to surface tension, pressure and gravity are in equilibrium. 
Amongst the many possible equilibrium shapes of the drop, only those which 
are stable occur naturally. The calculus of variations has been used to determine 
theoretically the stable equilibria, by calculating the energy change when 
the liquid in equilibrium experiences axially symmetrical perturbations under 
physically realistic constraints. If the energy change can be made negative, the 
drop is unstable. With this criterion, stable equilibria have been identified through 
which the naturally growing drops evolve until they reach a maximum volume, 
when they become unstable. These results are illustrated by calculations relating 
to typical experimental conditions. 

1. Introduction 
A drop of water hanging from a tap and drops of condensation on a ceiling are 

familiar phenomena which illustrate the balancing of forces due to surface tension, 
pressure and gravity. Measurements of drop shape have often been used as a 
means of determining surface tension, and for this reason considerable effort 
has been devoted in the past to the calculation of drop profiles by numerical in- 
tegration of the equations determining the equilibrium. Bakker (1928) has 
summarized many of the results and discussed their practical application. Re- 
cently, Padday (1971) has made available extensive tables giving the equilibrium 
profiles of many axially symmetrical menisci, including those of pendent drops. 

Amongst the earlier work that of Lohnstein (1906a,b, 1907) is particularly 
important. He showed that, for a drop hanging below a horizontal support which 
it wets, the area of contact cannot exceed a certain value. He also studied drops 
hanging from the end of a tube and showed that their maximum volumes depend 
on the radius of the  tube. His aim was primarily to enable more accurate values 
of surface tension to be derived from experiment, and he introduced a hypothesis 
which enabled him to find the weight of liquid which fell from the drop when 
its limiting volume was exceeded. 

All of this work was exclusively concerned with the determination of equili- 
brium shapes and the question of their stability was ignored. It is however not 
clear a priori whether the maximum drop volumes predicted by Lohnstein can 
be achieved in practice, or whether instability occurs at an earlier stage. An 
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investigation of this possibility has recently been undertaken by Padday & 
Pitt (1973), using numerical methods. Unfortunately this approach requires an 
arbitrary assumption about the nature of the perturbation with respect to which 
stability is to be calculated. There remains doubt whether stability has been 
proved for other possible perturbations having the same symmetry. 

To avoid this difficulty an analytical method is necessary and we shall present 
here a study of the stability of axially symmetrical pendent drops, using the 
calculus of variations. This method was used in an earlier publication (Pitts 
1973, referred to subsequently as I) examining the stability of ‘two-dimensional ’ 
drops, where the equilibrium profiles can be expressed in known functions. In  
contrast, axially symmetrical drop profiles cannot be expressed in closed form, 
and the stability problem is more troublesome. However, some easily interpreted 
results are nevertheless obtainable. 

We shall consider three situations. First, we shall determine the stability of a 
drop hanging from a ceiling. The volume of liquid will be supposed fixed, but the 
area of contact and the height and shape of the drop can be perturbed. On simple 
physical grounds we expect the equilibrium volumes to be less than some limiting 
value (as Lohnstein showed by his calculations) and we shall investigate the 
stability of all the equilibria. The second problem is the stability of a drop of 
fixed volume hanging from a tube, where perturbations can only alter the drop 
height and shape. The third problem, whose equilibrium was studied by Lohn- 
stein, relates to liquid held in a drop a t  the end of a tube by means of a suitable 
constant pressure applied to the liquid in the tube. Here perturbations occur a t  
constant pressure and both the volume and the profile of the drop can change. 

It will be assumed that the perturbations are axially symmetrical. In 3 2 the 
variational method will be outlined and subsequent sections will be based on this 
account. 

2. A drop hanging from a horizontal support 
2.1. Equilibrium and stability 

We imagine a horizontal plane below which a drop of liquid hangs. The origin 
of co-ordinates is taken at  the apex of the drop, with the x axis horizontal and the 
y axis vertically upwards (see figure 1).  The support is the plane y = h. We 
require zn expression for the energy of the drop. We consider an elementary 
slice of thickness dy and radius x(y). If ds is the length of the profile of the drop 
intercepted by the slice, surface tension contributes energy 2nyxds, where y 
is the surface tension. If we reckon potential energy with reference to the hori- 
zontal support, the elementary slice will have lost potential energy equal to 
p g m 2 ( h  - y )  dy. Finally, there will be a contribution due to the interfacial energy 
of the liquid and the support. If xo is the radius of the liquid-support interface, 
the interfacial energy can be written as nbx& where b is a constant characterizing 
the liquid and the material of the support. Thus the total energy is 
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FIGURE 1. The co-ordinate system. 

and the volume ‘v of the drop is 

v = 71 x2dy. s,” 
The equilibrium shape of the drop is obtained by finding the profile x(y) which 
minimizes E while keeping P constant. This is a typical isoperimetric problem 
in the calculus of variations and we can immediately use the standard results. 
The Euler-Lagrange equation (for the vanishing of the f i s t  variation) yields 
the well-known equations relating hydrostatic pressure, surface tension and the 
curvature of the surface. Also, the end-point conditions show that the profile 
of the drop must cut the y axis at the origin at right angles, and at the support 

the relation b = -ycose, 

where 0 is the angle of contact (see figure i) ,  must hold. Further, the profile 
cannot have any corners. These results can of course be derived more directly 
by simple physical arguments. 

We shall now rewrite the basic equations, using dimensionless variables. Taking 
(y/pg)* as the unit of length we define K and h by the equations 

K = w P g ) - 4  /l = xo(Y/Ps)-). 
Corresponding to the energy and the volume we introduce dimensionless quanti- 
ties E, and v defined by the equations 

E, = Epg/ny2, v = V(pg)g/nyg. 
If we use a suffix to denote differentiation (e.g. xy = dx/dy)  the equations are 



490 E.  Pitts 

Equilibrium is determined by the vanishing of the first variation of E,-,i~v, 
where y is an arbitrary multiplier. The Euler-Lagrange equation is 

This may be rearranged in two familiar forms 

and 
y - p  = -x- ( 1 +x;)-*+x,,(I +x I 2 ) -6, 

xx,(y - y) = d[x( 1 + x3-4py. 

( 3 b )  

(3c) 

From ( 3 b )  we see that p is the sum of the curvatures at  the origin and is neces- 
sarily positive for a pendent drop. A t  the point C in figure I we must have 

X, (K)  = cot 8. 

5 = 2yiy-a + O(yQ), 
Near the origin 

and near C 

.E = h + (y - K )  cot 8 + *(y- K ) ~  [A(K- ,U)  + sin81 A-lsir38 + O(y - K ) ~ ,  (6) 

Here the value of xY&) has been evaluated from (3  b) .  

using (4) we find 

i.e. the weight is balanced by the forces due to pressure and surface tension at  the 
interface. This result is the only integral of (3) which can be obtained in closed 
form. Extensive numerical tables of solutions have been made available by Pad- 
day (1971). Here we shall only remark that when y is given, that is, the curva- 
ture at the origin is prescribed, numerical integration gives x as a function of y. 
The height K is then determined by (a), which likewise determines A. Hence 
from (7) the value of v can be found. The quantities K,  h and v for the equili- 
brium drop can be regarded as dependent on the parameter y.  

We can differentiate E, in (1) with respect top,  and after integration by parts, 
the use of (3) and evaluation of the limits by means of (5) and (6) we finally obtain 

(8) 

aresult which exactly corresponds to that in I .  In  (8), p - Kis the sum of the curva- 
tures at the horizontal support and so is proportional to the pressure in the 
liquid. The result (8) therefore expresses the change in energy as the product of the 
volume change and the pressure at which the element of volume must be intro- 
duced at  the reference level. We note that, when the equilibrium volume has a 
maximum, the energy passes through a turning point; in fact since p is then less 
than K ,  E ,  passes through a minimum. 

In order to investigate the stability of the equilibria described by the solutions 
of (3) we need the change SE, in the energy caused by perturbation of the drop. 
We suppose first of all that small changes Sh and SK are made in h and K ,  and that 
the profile of the drop is unchanged from the apex up to a height yo (which will 
later be made to approach zero), and therefore the profile is x(y)+c.s(y). (See 

By integration of ( 3 c )  over the range 0 to K ,  after integrating by parts and 

v = h2(~-y)+2hsin0, ( 7 )  

dE,/dy = (P - K )  dv/dP, 
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FIGURE 2. The variation of the profile. 

figure 2.) Here z(y) is the equilibrium profile and a(y) is the perturbation, B being 
of the same magnitude as Sh and SK. The changed values of x, h and K are sub- 
stituted in (1) to give the new value E, + SE,. By subtraction SE, is obtained, the 
evaluation being continued as far as terms O(e2). The procedure is similar to 
that described in I. From geometry, we have 

and 
 YO) = 0 (9) 

x(K+&KK)+E~(K+SK) = h+Sh. (10) 

The condition for constant volume is 

J o  

After extensive manipulation and use of (31, (5) and (6) we obtain 

SE, = - &A2 cos 8 + Z S A ~ K [ A ( K  - p) + cosec 01 

+ +%c2 [A2 - 2 cosec 0 cot 0- ~ A ( K  - p )  cot B] 

(All first-order terms cancel, because of the equilibrium equations.) This ex- 
pression for SE, evidently depends upon the function s(y), which apart from 
satisfying (9)-( 11) is otherwise arbitrary. If we choose s(y) so that the integral 
in (12) is minimized for the given values of 6h and SK, we shall obtain the least 
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possible value of SE,. If this is always positive, no matter what 6h and SK, the 
equilibrium will be stable for this type of perturbation. 

We therefore have to determine s to minimize the integral, subject to t,he 
condition ( 1  l), which may be written as 

C+bK K + B K  -L x2dy = 2€/;0+8K%sdy+t2 s, s2dy. (13) 

This is again an isoperimetric variational problem. Following the standard 
method, we multiply (13) by an arbitrary multiplier (written as €al for conven- 
ience) and add it to the integral in (12). We therefore seek the unconditional 
minimum of 

J = t2 [s2(y - p) + 2a1sx + ~ss,x,( 1 +xi)-* + XS%( 1 + x%)-+] dy .  (14) lo 
The Euler-Lagrange equation is 

s(Y-,u) + a 1 ~ + s , ~ , ( l  +xi)-a = d[sx,(l + x ~ ) - * + x s ~ ( ~  +2;)-8]/dy. (15) 

If we put f = x( 1 + xi)-$ (16) 

d(fs,)/dy + sx-1( 1 + xi)-& = alx. 

and use ( 3 b )  we find that (15) may be written as 

(17) 

This is the Jacobi accessory equation for our variational problem, 
By integration by parts and use of (15) we find 

/:@s, [sx,( 1 fxi)-*+xs,(1+x3-$]dy 

= [s2x,( 1 + x$)-+ + xss,( 1 + x3-";, - s[sl/xy( 1 +xi)-', + s(y - p )  + alx] dy. 
Hence we derive lo (18) 

SEo = - ah2 cos 8 + 26h&c[h(~ -p) + cosec 81 
+ ~ S ~ ~ [ h 2 - 2 c o s e c B c o t 8 - 2 h ( ~ - , ~ ) c o t f ? ]  

+ e 2 [ s 2 ( ~ ) ~ ~ ~ 8 + A ~ ( ~ ) ~ y ( ~ ) s i n S 8 ] - ~ 2 ~ l  xsdy. (19) 

From (10) we can find ES(K) and from (13) the term in a, can be evaluated. Sub- 
stitution then gives 

s:l 

623, = 26h S K [ A ( K - ~ )  +sin 6'1 + Q ~ K ~  [A2- 2 cos8- 2 A ( ~ - p )  cot 01 

+ E S ~ ( K )  (ah - 6~ cot 0) hsin3 8 + &al h 2 S ~ .  (20)  

We now have to obtain an s(y) which satisfies (15). If we differentiate the equili- 

(21) 

brium equation (3  a)  with respect to y, there results 

x,(y-p)+x+x,x,,(l +xi)-', = d[xi(l +x;)-*+Irz,,(l +x;)-%]/dy. 

Differentiation of (3  a) with respect to p gives 
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TO this must be added the solutions of the homogeneous equation (i.e. equation 
(15) with a, equal to zero). By adding (21) and (22) we see that 

r(y) = + axlap (23) 

is one solution of the homogeneous equation. Standard methods show that the 
other solution t ( y )  is given by 

where c is a constant. The general expression for s is therefore 

s = -a,ax/~p+a,r+a,t, (25) 

where a,, a2 and a, are constants. These are determined by the conditions (9), 
(10) and (13), whence we obtain 

0 = - s a l ( a x / a ~ ) , + ~ ~ z ~ ( y o )  +%t(YO), (26) 

(27) 

(28) 

SA - S K  cote = - s q x p p ) ,  + Ea2r(K) + ea , t (K) ,  

ax - &A2& = - F U ~ ~ ~ ~ X  -dy + eaZ/:@xr dy + €a3 xt dy .  

It is possible to manipulate these equations in a way analogous to that in I. In  
spite of considerable simplification, the result is too complicated to be very in- 
formative until we allow yo to tend to zero so that the perturbation extends over 
the entire surface of the drop. We shall therefore evaluate the constants bearing 
in mind that yo will be made to go to zero. 

Near the origin, we see from (5) that 

aP I. 

r = O(y-+c-+), 

t = O( -y-+lny). 

(rt-l)uo + 0. 

and hence 

Thus as yo tends to zero 

If we divide (26) throughout by t(yo) and let yo tend to zero, we find 

a, = O(rt-l),@ + 0. (32) 

We may then solve equations (27) and (28) for a, and u2. In  simplifying the 
result, we use the definition in (23) and evaluate derivatives at  K from (6).  Also, 
from (2) we have 

If we put 

(33) 

(34) 
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The expression for SE, in (20) can now be evaluated. After much algebra, and 
using the value of dv/dp found by differentiating (7), we obtain 

It will be noticed that there are no terms in &ASK or S K ~ .  
This result has been obtained by allowing yo to tend to zero. If we had assumed 

a t  the outset that yo was zero, then in order that s(yo) remained finite, we would 
have been obliged to have had a2 and u3 both zero. To satisfy (27) and (28) it 
would then have been necessary to assume that a1 and also &I/& had particular 
values. With these values, the calculation of SE, again yields (38), a result we 
shall discuss in 9 2.2. 

In  the foregoing it has been assumed that Sh and SK do not both vanish. We 
have now to investigate the possibility that the perturbation takes place with 
fixed end points, so that both Sh and SK are zero. We return to the expression 
(12) for 6Eo, and suppose that the perturbation s(y) is zero when 0 < y < yo and 
also when y1 d y < K. Since 6h and SK are now zero, we find 

SE, = €2~~[8L(?/-P)+28SyZy(l+Z~)t+xs~(l  +x Y 2 ) -81 dy. (39) 

The condition for constant volume from (13) is now 

We may add a multiple €al of (40) to (39) and after an integration by parts obtain 

(41) 
I d 

- - [sxg ( 1  + x;)-J + xsy( 1 + x3-$1 ay + [s%,( 1 + xi)-+ + xss,( 1 + x;)"];;. 
dY 

Since $(yo) and s(yl) are both zero, we can evidently reduce SEo to zero provided 
that s(y) satisfies the Jacobi equation (15). In this case, the energy change is 
0(e3), which can be made positive or negative, so that the equilibrium is unstable. 
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The solution of the Jacobi equation is given by (25) and the conditions corre- 
sponding to (26)-(28) are now 

= -al(az/ap),o + a2r(yO) f a3t(y0), ( 42) 

O = -al(ax/ap),11-a2r(yl) +a3t(y1)? (43) 

In order that non-zero solutions for a,, a2 and a3 may exist, the determinant of 
these equations must vanish. Expansion of the determinant gives 

Since t(yo) is O(yii1n yo) and r ( y J  is O(y& as yotends to zero, it may be shown that 
if (45) is t o  hold as yo tends to zero it is necessary and sufficient that the coefficient 
of t (yo)  is zero, that is 

where 
MY,) = 0, (46) 

Now r satisfies the equation 

a.nd from (22) we have 

If we multiply this equation by r ,  subtract it from (48) multiplied by axlap 
and integrate we find 

(The behaviour of r as y tends t o  zero shows that the constant of integration is 
zero.) From the definition in (47) we find 

M = y#p-% + O(yQ) 
and 

ax 

= f-1 (s,” xr d y) 2 .  
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From these results i t  follows that the zeros of N and r alternate. Thus M is 
initially zero and is certainly positive as long as the value of y does not exceed 
the first zero of r.  M changes from positive to negative at a value of y between 
the first and second zeros of r .  

From the definitions we find 

Hence, if dN/dp is negative, it follows that, a t  some point in the range ( O , K ) ,  &I 
has passed through zero, and so the determinant can be made equal to zero and 
hence the drop is unstable. 

2.2. Discussion and numerical results 

These results may first of all be compared with those derived in I for the ‘two- 
dimensional’ drop. In  that case, there is no requirement corresponding to (46) 
because the two-dimensional drop is always stable when the end points are fixed. 
This is immediately obvious because the integral for SEo corresponding to (39) has 
an integrand which is essentially positive. When the end points can move, it 
was shown in I that the condition SE, > 0 led to two different results depending 
whether it was assumed that yo was allowed to tend to zero, or whether it was 
taken as zero from the outset. In  the latter circumstances, the analysis showed 
that geometrical conditions could only be satisfied by a particular ratio SA/SK, 
which implied an unrealistic limitation on the possible perturbations. Hence 
the stability criterion for the two-dimensional drop was deduced by using the 
limiting process. In the present problem, on the other hand, the analysis in $ 2.1 
shows that, for the axially symmetrical drop, only one result is obtained (namely 
equation (38)) irrespective of the assumption about yo. Also, it is interesting to 
note that (38) is exactly analogous to the result in I which arises by taking yo 
equal to zero initially. This behaviour is related to the fact noted earlier that 
terms in S A ~ K  and S K ~  vanish in the result for SEo. Such terms are present in I 
and the condition SE, > 0 imposes further requirements which have no counter- 
part in $2.1. 

In  the absence of analytical solutions of the equilibrium equations we shall 
use numerical results to illustrate the implications of (38) and (46). A brief 
account of the numerical method is placed in the appendix. The method used by 
Mills (1953) and Stauffer (1965) has been extended to obtain improved accuracy 
with little extra computing. (Padday (1971) used a geometrical method due to 
Kelvin, which is less convenient.) Results are calculated by choosing a particular 
value of 8 and taking a set of values of p. The integration of (3b) continues until 
(4) is satisfied, when the values of K and h me obtained. From (7) and (34) values 
of and N are then found. 

Equation (38) is expressed in terms of derivatives with respect to ,LA, the curva- 
ture at  the apex. We could also express SE, in terms ofdNldv.  However, neither 
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7 0 1 - 3 4 
K 

FIGURE 3. Calculated values of v, N ,  R and p as functions of K ,  for a drop hanging from a 
ceiling (contact angle 20"). Regions with SE, < 0 according to (38) are shown as hatched 
areas. 

p nor v is an easily visualized variable, and we shall choose instead the drop 
height K as the independent variable. If we put 

R = h(K-,u)+sinB, (54) 

equation (38) may evidently be written as 

SE, = 3 6 A 2 R g ( E ) - ' .  dK d K  (55)  

In  figure 3 values of v, N ,  R and ,u are shown as functions of K for a contact angle 
of 20". (For a contact angle of 5", the qualitative features are the same.) It will 
be seen that initially R, dNldK and d,u/dK are all negative, and more detailed plots 
show that R, dN/dK and dp/dK are all zero for the same value of K. This is a 
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general result which can be demonstrated as follows. By differentiation of (6) 
we find 

and by differentiation of (4) 

When dpldlc is zero, providing that its coefficients in the preceding equations are 
finite, we see that 

and 
dh/dK = Cot8 ( 5 8 )  

(59) 

dN/dK = 0. (60) 

T ~ J K )  = Rh-1 sin-3 8 = 0. 

Combining these results we see that when d,u/dlc is zero 

Reference to figure 3 and equation (55) shows that, as v increases from zero 
with increasing K, SE, is positive until v passes its maximum value, at  which E, 
passes through a minimum as shown by (8). (The same result holds for a 5" con- 
tact angle.) As the height continues to increase, and the equilibrium volumes 
decrease, v passes through a minimum and then increases again. The regions in 
which 6E, is negative according to (55) have been indicated in the figure. Outside 
these regions, at  points such as A,  B and C, whose profiles are shown, SE, is 
positive and the criterion ( 5 5 )  for stability is satisfied. However, we see that for 
drops such as B the value of dN/dK is negative, and so also is dN/dp. Hence, M 
has passed through zero, and according to the argument in $2.1 the drop is 
unstable. For drops such as C, dN/d,u has again become positive, which means 
that M has passed through two zeros and the drop is unstable. 

Figure 3 therefore shows that for this contact angle the drop is stable with 
respect to axially symmetrical perturbations provided that dv/dK is positive since 
throughout this region RdN/dK is positive. A similar result holds for a contact 
angle of 5". 

A striking change occurs in the appearance of the results for a contact angle 
of 50", and those for 70" are qualitatively similar. From figure 4 we see that, as 
8 increases from zero, the drop first has a lens-like shape (e.g. a t  A). An inflexion 
point then appears in the profile as the volume and height increase (e.g. at B )  
and eventually v reaches a maximum. Thereafter v decreases and a t  first K 

increases, but eventually reaches a maximum, and then both v and K decrease 
together. The profiles of the drops corresponding to the points A,  B, C, B and E 
are illustrated. Consideration of the curves for N and R also shows that according 
to (55) 6E, is negative in the regions shown. At C ,  dN/dK changes sign, and for 
points between C and P (corresponding to the maximum value of K )  dN/dlc is 
negative while d,u/dlc is positive. At P, dpldlc changes sign, becoming negative 
while dN/dK is positive. Thus, for all drops corresponding to points on the curve 
containing EDP up to C,  dN/dp is negative, and so they are unstable. It therefore 
follows from figure 4 that the growing drops are stable as long as dv/dK is positive. 
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FIGURE 4. Calculated values of v, N ,  R and y as functions of K for a drop hanging from a 
ceiling (contact angle 50'). Regions with SE, < 0 according to (38) are shown as hatched 
areas. 
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FIGURE 4. Calculated values of v, N ,  R and y as functions of K for a drop hanging from a 
ceiling (contact angle 50'). Regions with SE, < 0 according to (38) are shown as hatched 
areas. 

The general result of the investigation is that for the contact angles considered 
the pendent drop grows in volume and height through a sequence of stable equili- 
bria until it reaches its maximum volume. If more liquid is added, no equilibrium 
is possible, but if liquid is removed there exist equilibria having greater drop 
heights, which are unstable. 

In  conclusion, we recall that we have considered only axially symmetrical 
perturbations which extend over the whole surface of the drop. Other possible 
types of perturbation would require separate investigation. We have also as- 
sumed that the angle of contact is strictly constant. This is often untrue in 
practice; the angle of contact for a liquid whose area of contact with a solid is 
increasing may differ substantially from that when the area of the interface is 
diminishing. The remarkable change in the appearance of the v, K plots shown in 
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figures 3 and 4 is a noteworthy feature of the equilibrium solutions. More detailed 
calculations for angles of contact in the range 35"-45" show the very complex 
behaviour of the v, K plot in the vicinity of the minimum of v in figure 3. 

3. A drop hanging from a tube: constant volume 
We imagine a vertical tube having a plunger below which liquid fills the tube 

and hangs in a drop from its end. When the position of the plunger is fixed, the 
volume of liquid in the drop is constant. We therefore have to consider the varia- 
tion of the equilibrium shape of the drop keeping the volume constant, and a 
large part of the analysis in $ 2  can be used. When we reckon potential energy 
relative to the bottom of the tube, the energy is given by ( 1 )  without the term 
A ~ C O S B .  The radius h of the tube is constant, so that the boundary condition in 
(4) is replaced by 

X ( K )  = h. (61) 

The angle 0 in (4) is no longer a constant, but varies with the volume of the drop. 
The calculation of the variation of the energy follows exactly the same course as 
before, but now A is constant. The expression for SE,is given by (12) with SA equal 
to zero. The Jacobi accessory equation is again (17 ) ,  whose solution has to satisfy 
conditions (9) and (10) (with Sh zero) and the constant-volume condition (1 1 ) .  
Equations (26)-(28) again apply and as before we find that u3 must be zero. When 
Sh is zero we find from (27) and (28) that 

€al = €a2 = - SK, (62) 

B S J K )  = - & K [ ~ ( K - , L L )  +sin8]A-1sin-38. (63) 

and hence 

I n  this expression, terms in ax$,u (which would involve aB/a,u) cancel by virtue 
of (62). Substituting these results in (20) we find 

6E, = 0, (64) 

that is, SE, depends on powers of e greater than the second. (This result is 
obtained from (38) when 6h is zero, but the problem requires more careful analysis 
because B in the present example is no longer constant. Nevertheless, the dis- 
appearance of the terms in 8xy/a,u in sy leads to agreement between (64) and (38) 
when Sh is zero.) 

Since the drop is in equilibrium, it follows that the coefficient of €3 in &E, 
must vanish, and SE, must depend on e4. This behaviour is quantitatively quite 
different from that of the drop on a ceiling discussed in $2 .  For a given small 
value of SIC the energy change for a drop hanging on a tube a t  constant volume is 
smaller by two orders of SK than the change for the drop hanging from a ceiling. 
We shall not evaluate SE, further, but instead examine a different problem. 
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4. A drop hanging from a tube: constant pressure 
4.1. Equilibrium and stability 

Again we consider a drop hanging from a vertical tube, but we suppose that its 
equilibrium volume is controlled by the pressure in the liquid a t  the mouth of the 
tube. This pressure is kept constant while the drop is perturbed, and we now have 
to consider changes in volume. 

If po is the pressure at the mouth of the tube and potent,ial energy is reckoned 
relative to the end of the tube, the energy is 

With the same dimensionless variables as in 5 2, and writing 

w = po(3/p9)-4 P = K + 0, (651, (66) 

(67) 

we h d  

[2x( 1 + x p  + x y y  --/A)] dy 

and 

The boundary condition is 
X(K) = h, 

and we shall define the (variable) angle 8 by 

XJK) = cot B 
[equation (4)]. 
This is a simpler variational problem than those previously considered, since 

we are seeking an unconditional minimum of E,. The Euler-Lagrange equation 
gives the already-familiar result in (3a).  We now calculate the second variation 
of E,. As before x ( y )  is replaced by x + ES and we suppose that s(y) is zero for 
0 < y <yo. Wefind 

SE, = - 6 ~ 6 ~ + ~ 6 ~ ~ [ h 2 - 2 c o s e c B c o t B - 2 h ( ~ - , u ) c o t 8 ]  

+ [8(y -p )  + 2ss,x,( 1 +xi)-* + xsE( 1 + ~3-4-1 dy. (70) 

Here 

The analysis follows a similar path to that in 8 2. In  the absence of the constant- 
volume condition, the Jacobi equation is now 

s(y -/A) + syxy( 1 + xi)-+ = d[sx,( 1 +xi)-* + xs,( 1 + x p ] / d y ,  (72) 
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which corresponds to (17) with a1 equal to zero. To obtain the solutions, we regard 
w as the parameter of the solut,ions of the equilibrium equation (3a) .  Differentia- 
tion then shows t,hat a solution of (72) is 

r = aX/aw + ( 1  + dK/dw) xy. (73) 

The other solution is given by (24). The expression for s is therefore 

s = a,r+u3t. 

Evaluation of the integral.in (70) then gives 

(74) 

6Eo = - 6 ~ 6 ~  + , ~ S K ~ [ ~ ~ - C O S O -  h(~-p)cotO] -EACO~OS~II~OS~(K)SK. (75) 

There are only two conditions which s must satisfy, namely the geometrical 
conditions (9) and (10) with 6h equal to zero. These give respectively 

Taking the limit when yo tends to zero, (76)  shows that a3 is O(rt-I),  which tends 
to zero. With this result and the definition ofr,  we find 

r(K) = C O t 8 ,  

es,(K) = - 6 ~ [ h ( ~ - p )  +sin01 h - 1 s i n - 3 B + 6 ~ c ~ ~ e ~ 2 0 d O / d w ,  

6EO = - 6K 6V + &6K2[h2 - 2h COS 8 dO/d@]. 

('78) 

(79) 

mid so 

Substituting the value of s in (7 I )  we find 

from (68). By differentiating the result in (7)  we also have 

dv/dw = - A2 -!- 2h cos 8d6/dw, 
and so finally 

SE, = 4 (dv /dw)  6 ~ 2 .  

We have now to  consider the possibility that the end points are both fixed. 
As in 3 2 .1  we suppose that the perturbation is zero for values of y in the ranges 
(0, yo) and (yl, K) and we shall later allow yo to tend to zero. With this assumption, 
(70) gives 

and the conditions for s, corresponding to (76) and (77) ,  are 

= a2r (Y0)  +a3t(y0), 

0 = azr(?h) + % t ( Y l ) .  
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FIGURE 5. Calculated values of TI for a drop hanging from a tube as a function of w (pro- 
portional to the pressure in the liquid at the mouth of the tube). Results for three different 
radii h are shown. 

The arguments used in $2.1 can now be applied, and we see that SE, can be 
reduced to zero provided that (84) and (85) are satisfied. For these equations to 
have a non-zero solution for a2 and a3 we must evidently have 

r(Yo)/%AJ = r(YmY1)- (86) 

Hence, as yo tends to zero and the left-hand side of this equation tends to zero, 
we must have 

r(YJ = 0- (87) 

It follows that if r has a zero in the range (0, K) we can reduce SE, to terms of 
order s3, and we therefore have instability. We note that by integrating (48) we 
find 

fr, = -sDyrs- i (~  +xi)-*dy, (88) 

and hence r,  is certainly negative throughout the range from the origin in which r 
is positive. 

4.2. Discussion and numerical results 

M7e shall first consider the implications of (82). Since w is proportional to pot  
the pressure a t  the mouth of the tube, 6Eo is positive whenever the volume of the 
drop and the pressure increase or decrease together, and it appears that the drop 
is then stable. (We shall see later by considering (87) that this is not always true.) 
If the pressure decreases when v increases, it is obvious that the drop is unstable, 
since the small increase in would cause more liquid to be sucked into the drop. 
Three examples have been calculated to illustrate this result, with h = 1,2  
and 2.5. S?or water (y/pg)S is about 0.26 cm, so that these values correspond to 
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radii of 0.26, 0.52 and 0.65 cm approximately. Figure 5 shows the variation of v 
as a function of w,  and it will be seen that each curve has a number of regions in 
which dvldw is positive. For h 2 1 and 2, as v increases from zero dvldo is at  first 
positive, and reverses sign a t  a value of v much less than the maximum theoretical 
equilibrium volume. On the other hand, when h = 2.5, the initial value of dv/dw is 
negative, so that the growing drop is unstable from the outset. 

Before examining the other condition for stability related to (87), it is of interest 
to determine the smallest value of h for which the drop is unstable from the 
beginning. We therefore have to find the smallest value of h for which dvldw 
is initially negative. We consider a shallow drop in which the gradient of y with 
respect to x is small. If we rewrite the equilibrium equation (3a) in terms of yx 
and neglect y: comparcd with unity, we obtain 

XYzz+Yz+X(Y-P) = 0. (89) 

( 90) 

The solution of this equation which is finite at the origin is 

Y = Pu[l -Jo(X)l, 

where J,(x) is the Bessel function of order zero. Condition (69) then gives 

K = P[1 -Jo(h)], 
and hence from (66) 

From t,he properties of Bessel functions we readily find 

w = PJO(A). 

and hence 
(93) 

(94) 

This result shows that when h just exceeds the first zero of Jo (which is 2.40483) 
dvldw is negative since J2(h) is then positive. It follows that it is impossible to 
form stable drops under constant pressure if the radius of the tube exceeds 
2.40483 in dimensionless units, which for water corresponds to a radius of about 
0.625 cm. (Numerical integration of the equilibrium equation indicates that dvldw 
changes sign a t  a radius close to 2.4047.) 

We have now to consider the further requirement for stability, namely that 
r ( y )  should not possess a zero within the range (0, K ) .  The definition (73) shows 
that for small values of y, for which xy is very large and positive, if 1 + dK/do is 
positive r will be positive. If then r does not vanish in the range (0, ti) equation 
(88) shows that rv is negative throughout the range, and so the least value of r 
will occur when y is equal to K .  Since r ( K )  is equal to cot 6 ,  if 6 does not exceed 
and is positive, then r will be positive in the range (0, K )  and it will not be possible 
to satisfy (87), so that the drop will be stable relative to this type of perturbation. 
The calculations show that in fact 0 < 0 < Qn and so we have only to  examine the 
sign of 1 + d/c/do. If this is negative, for small values of y the value of r is very 
large and negative, but cot 0 is positive. It follows that r (y )  must have passed 
through zero, and hence the drop is not stable. 

I n  figure 6, K is shown as a function of w for the three examples illustrated in 
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FIGURE 6. Calculated values of K as a €unction of w ,  corresponding 
to  the results in figure 5.  

figure 5. For the curves with h = 1 and 2, as v increases from zero dK/dw is positive, 
becoming infinite at  A, and A,, where the value of w is also that for which dvldw 
becomes infinite (see figure 5 ) .  From the preceding arguments it follows that, 
throughout the region from the origin to A ,  or A,, 6E, is certainly positive and the 
drop is stable. As has already been remarked, when A = 2-5 there is no correspond- 
ing region of the curve. 

In  the next region of the curve, that is A,B, or A,B,, dK/dw is less than - 1, 
as can be seen by comparing this gradient (indicated on figure 6) with that of the 
curve. Also, for the curve h = 2-5, the gradient of dKldo is less than - 1 in the 
region between the origin and B2+ In  all these regions it is therefore possible to 
satisfy (87) and so the drop is unstable. (Reference to figure 5 shows that, in 
part of these regions on the corresponding curves in the vicinity of B,, B, and B,.,, 
dvldo is positive and (82) considered alone would indicate that the drops were 
stable.) 

It follows that the profiles which correspond to points in figure 6 on the 
curves beyond A ,  and A ,  possess at least one zero of r ( y ) .  All profiles correspond- 
ing to h = 2.5 include a zero. Thus the only stable drops are those corresponding 
to the regions OA, and OA,. 

5. Concluding remarks 
The foregoing examples have the common feature that stable drops are those 

for which the volume and drop height increase together. The analysis has, how- 
ever, revealed that this criterion is not the sole requirement. It is interesting 
that the disrupting axially symmetrical perturbations may be either those which 
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change the end points of the drop profiles or those which do not, depending on 
circumstances. For the example of a drop of liquid of fixed volume hanging 
from the end of a tube, a full analysis would require a fourth-order perturbation 
treatment. Another noteworthy result is that stable drops on a tube can only be 
formed under constant pressure in the liquid if the radius is less than a certain 
critical value. 

The results illustrate the complexity of the criteria for the stability of axially 
symmetrical pendent drops, which greatly exceeds that €or ‘two-dimensional ’ 
drops. 

The stimulus to undertake this investigation arose in part from the numerical 
work of Dr Padday and his colleagues of the Research Division, Kodak Limited, 
and I am also grateful to Mr A.Marriage of the same Division for his constant 
interest and for many discussions which helped to clarify the meaning of the 
somewhat complicated analytical results. 

Appendix 
Most of the earlier work on the numerical integration of the equilibrium 

equations (3) used intrinsic variables of the curve, which are particularly con- 
venient. For this reason, and to facilitate comparison with published calculations, 
we shall transform (3). We introduce a parameter /3 defined by 

P = - 41~2, 

b2 = -PYIPS. 

and define a length b by the equation 

We replace the dimensionless variables of $ 2  et seq. by new dimensionless variables 
6 and 7, given by 

5 = x( -/3-+, 7 = y( +-+. (A3L (-44) 

If I is the length along the profile of the drop from the apex, we put 

s = l / b ,  

and put tan q5 equal to the gradient of the curve, so that 

Hence 
.g7 = cot 4. 

and equations (3) have the standard form (cf. Stauffer 1965) 

dq5 sin4 -&+5 = 2+&.  
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From this equation, we find by differentiation 

The integration of (A 9) then proceeds as follows. We choose a small increment 
gin the variable s. Suppose that, when s has the value so, $ is equal to q50 and t and 
q have the values Eo and qo. The values corresponding to s + CT are then found from 
(A7) and (A8), and are 

( A l l )  

(A 12) 

El = Eo + B cos q50 - $02q5h sin q50 + 0 ( 0 3 ) ,  

ql = qo + (r sin q50 + #az& cos q5, + O(a3), 

where the prime denotes dlds. We may calculate the new value 
the Taylor series 

a t  s + CT from 

= $o + vq5; + + o(v3). (A 13) 

4; = - 5 i l ~ i n $ ~ + 2 + / 9 q ~ ,  (A 14) 

(A 15) y - - 5-1 cosq51(ti1sin45,-9~)+IBsinq5,. 

The derivatives of #1 are found from (A9) and (A 10); hence 

In the numerical work terms O ( r 3 )  are neglected. The cycle of equations (A 11)- 
(A 15) is repeated with the values of and 4: replacing q& and q5; in (A 11)  and 
(A 12), and El and q,replacing to and qo; new values t2 and q2 are then calculated. 
Similar substitution in (A 13)-(A 15) competes the cycle. 

Previous workers, for instance Mills (1953) and Stauffer (1965), omit terms 
in C T ~ ,  but these are so easily calculated that they are worth retaining to take 
advantage of the increased accuracy. A value of v of 0.001 is convenient, The 
calculation starts with the initial values 

q5 = 0, q5’ = 1, $5” = 0. 

The integration proceeds with a chosen value of /3 until $ is equal to 8, the angle 
of contact, or until E reaches a value which corresponds to the radius of the 
tube. A simple linear interpolation procedure determines these end points with 
sufficient accuracy. The integration is then continued to find other possible. 
profiles which satisfy the boundary conditions for the given ,8. 

The numerical results were checked against several sets of published values. 
As a further check, f l  was put equal t o  zero, in which case the solution is the circle. 
$ = s. Hence, when q5 is equal to ~TT, the value of (t, 7) should be (0,2). The calcu- 
lated values differed from these by 8 x for 7. (Part of this 
small error is certainly attributable to the rather crude interpolation used to 
determine the end point.) 

for 5 and 2 x 
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Note added in proof: Dr M. E. O’Neill has brought to my notice a thesis 
(University of Minnesota 1972) by P. R. Pujado, who states that C. Huh in a 
thesis (ibid. 1969) analyses the stability of pendent drops with respect to per- 
turbations t o  nearby equilibrium configurations. The end points are either 
fixed, or the contact angle for the perturbed shape is exactly the same as that 
for the unperturbed drop. For these restricted variations results are obtained 
for both axially and non-axially symmetrical perturbations. 
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